Regular epimorphism
提供: Mathpedia
regular epimorphism とは、圏のエピ射であって、コイコライザとして表すことができるようなもののことをいう。
定義
圏 $\mathcal{C}$ の射 $f\colon c\to d$ がregular epimorphismであるとは、射 $g_1,g_2:a\to c$ が存在して、$f$ が $g_1$ と $g_2$ のコイコライザとなることをいう。
具体例
- 環の圏 $\mathsf{Ring}$ において、包含射 $\mathbb{Z}\to \mathbb{Q}$ はエピ射であるが、regular epimorphismではない。